The Space Life: Microbes on Surfaces and in the Air aboard the International Space Station Dr. Aleksandra Checinska Sielaff Washington State University Extension – Youth and Families Program Unit Pullman, WA March 27, 2018 © 2018 California Institute of Technology. Government sponsorship acknowledged ## Overview - International Space Station as a living environment - Research microbes on the surfaces and in the air of the ISS - Conclusions ### International Space Station (ISS) - Launched on November 20th, 1998 - Low Earth Orbit (LEO) – altitude between 330 – 435 km (205 270 mi) - The brightest object on the sky - Size of a football field - Orbits Earth at 5 miles per second - Full crew: 6 people - Weights ~ 1 mln pounds ## Unique features of the ISS - 1. Microgravity - 2. Extreme conditions: - a) Vacuum - b) Atomic oxygen - c) Ultraviolet radiation - d) Particulate or ionizing radiation - e) Plasma - f) Temperature extremes ### Microorganisms - Smallest microorganisms that constitute bacteria, archaea, fungi, viruses, protozoa, algae - Ubiquitous and abundant in the environment - Have a variety of essential functions - Very often adapted to specific environmental niches, e.g. those that inhabit the boiling water springs in Yellowstone National Park ## Mysterious creatures? "Most types of microbes remain unknown. It is estimated that we know fewer than 1% of the microbial species on Earth. Yet microbes surround us everywhere - air, water, soil. An average gram of soil contains one billion (1,000,000,000) microbes representing probably several thousand species." *International Society of Microbial Ecology* # **Detection of Microbes – Traditional Methods** - Enumeration growth on the Petri dishes plate in solidified medium - 2. Identification based on the morphology Culture plates #### **Detection of Microbes – Molecular Methods** DNA extraction Polymerase Chain Reaction (PCR) Sequencing Database search #### Identification via 16S rRNA Discovery of a free-living chlorophyll *d*-producing cyanobacterium with a hybrid proteobacterial/cyanobacterial small-subunit rRNA gene. Miller et al. (2005). PNAS # Propidium Monoazide Treatment to Distinguish between Dead and Live Cells www.biotium.com Culture-Dependent and Culture-Independent Nucleic-Acid-Based Methods Used in the Microbial Safety Assessment of Milk and Dairy Products; Fusco and Quero (2014). Comprehensive Reviews in Food Science and Food Safety # **Bioluminescence Assay – Metabolically Active Cells** https://nhmu.utah.edu Thermofisher.com #### Study of Air and Surfaces #### Clean room - Multi-personnel - Gowning ("bunny suit", masks, gloves) - Gravity - Radiation - Activities limited to work (assembly of spacecrafts and instruments) #### ISS - Crew of 6 people - Casual clothes; shortsleeved shirts, shorts - Microgravity - Elevated radiation - Work and everyday activities (working, eating, sleeping, exercising, and #### **Detailed Sample Characteristics** | Sample name | Location | Source | Туре | Specifications | Duration | Model | Mission activities | |-------------------|-------------------------------------|-----------------------------------|---------|--|-----------|--|---| | ISS HEPA | ISS Node 2 | HEPA filter element | Air | HEPA rated, retains 99.97% particles >0.3 µm; 20-mesh inlet screen has 841 µm sieve openings | 40 months | Part no. SV810010-1,
Serial no. 0049;
HEPA media
supplied by Flanders
Filters, Inc.; Nomex
inlet screen | Returned aboard
STS-134/ULF6 in May
2011 | | ISS Debris | ISS | ISS Vacuum
Cleaner bag
dust | Surface | Vacuum bag retains
particles >6 µm;
HEPA rated filter
retains particles >0.3
µm | 1 day | International Space
Station vacuum
cleaner | Expedition 31;
returned aboard
Soyuz flight 29S in
July 2012 | | JPL-SAF
Debris | JPL – SAF
Cleanroom
Class 10K | Vacuum
cleaner bag
dust | Surface | HEPA rated filter
retains 99.7%
particles >0.3 μm | 70 days | Nilfisk GM80,
81620000 | Used for robotic
missions | | JPL-103
Debris | JPL – 103
Cleanroom
Class 1K | Vacuum
cleaner bag
dust | Surface | HEPA rated filter
retains 99.7%
particles >0.3 μm | >180 days | Nilfisk GM80,
81620000 | Sub-assembly of robotic missions | **Checinska, A.**, A. J. Probst, P. Vaishampayan, J. R. White, D. Kumar, V.G. Stepanov, G.E. Fox, H.R. Nilsson, D.L. Pierson, J. Perry, K. Venkateswaran. 2015. Microbiomes of the dust particles collected from the International Space Station and Spacecraft Assembly Facilities. Microbiome 3(1):50. #### **Bacterial Bioburden by Various Methods** #### Solibacillus kalamii ISSFR-015T **Source:** ISS HEPA filter #### **Characteristics:** - Rod, spore-former - A4α _I -Lys-_D-Glu peptidoglycan - MK-6, MK-7 and MK-8 isoprenoid guinones - polar lipid profile contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylserine, and one unknown phospholipid Name: ka.lam.i.i., N.L. gen. n. kalamii referring to Abdul Kalam, a well-known scientist who advanced space research in India Checinska, A., R. M. Kumar, D. Pal, S. Mayilraj, K. Venkateswaran. 2016. *Solibacillus kalamii* sp. nov., isolated from a high-efficiency particulate arrestance (HEPA) filter element used in the International Space Station. Submitted to IJSEM for a review. ### **Bacterial Community Composition** #### Significant Operational Taxonomic Units (OTUs) ## **Species Diversity** # Differential Bacterial Composition of the Clean Room and the ISS Samples #### Conclusions - First study to utilize next-generation sequencing (stateof-the-art methodology) on the samples from the International Space Station - Bacterial diversity based on the sequencing is much more diversified from culture plates. - The composition of the ISS samples from the HEPA filter (air) and vacuum cleaner (debris) was different but still more similar to each other than to clean room samples - Propidium monoazide treatment distinguished between dead and viable bacterial species. #### **Future Goals** - Environmental monitoring using rapid microbial detection and identification assay development - Current results help develop more advanced mitigation strategies for prolonged space travel (e.g. mission to Mars) #### Acknowledgments #### <u>Jet Propulsion Laboratory (Pasadena, CA, USA):</u> - Dr. Kasthuri Venkateswaran (Senior Research Scientist, Principal Investigator) - Dr. Parag Vaishampayan (Scientist) - Dr. Melissa Jones (Assistance Section Manager) #### Funding: Space Biology NNH12ZTT001N grant no. 19-12829-26 under Task Order NNN13D111T #### Collaborators: - Dr. Alexander Probst, University of Duisburg-Essen, Germany - Dr. James White, Resphera Biosciences, Baltimore, MD, USA - Deepika Kumar, University of Houston, Houston, TX, USA - Dr. Victor Stepanov, University of Houston, Houston, TX, USA - Dr. George Fox, University of Houston, Houston, TX, USA - Dr. Henrik Nilsson, University of Gothenburg, Sweden - Dr. Duane Pierson, Johnson Space Center, Houston, TX, USA - Jay Perry, Marshall Space Flight Center, Huntsville, AL, USA - Dr. Shanmugam Mayilraj, Microbial Type Culture Collection and Gene Bank, Chandigarh, India - Rajendran Mathan Kumar, Microbial Type Culture Collection and Gene Bank, Chandigarh, India - Deepika Pal, Microbial Type Culture Collection and Gene Bank, Chandigarth, India